Паутинообразный перелом

Паутинообразный перелом thumbnail

var div_970x90 = [[970, 90],[728, 90]];
var div_336x280 = [[250,250],[300,250],[320,170],[320,200],[320,250],[336,280]];
var div_300x600 = [[240,400],[240,600],[250,250],[300,250],[300,300],[300,320],[300,400],[300,500],[300,600]];
var div_650x333 = [[336,280],[580,332],[580,333],[650,333]];

googletag.cmd.push(function() {

var map650x333 = googletag.sizeMapping().addSize([992, 0], div_650x333).addSize([0, 0], [[336,280]]).build();

googletag.defineSlot(‘/21931593928/vuzlit_336x280_top’, div_336x280, ‘div-336x280_top’).addService(googletag.pubads());
googletag.defineSlot(‘/21931593928/vuzlit_336x280_1’, div_650x333, ‘div-336x280_1’).defineSizeMapping(map650x333).addService(googletag.pubads());
googletag.defineSlot(‘/21931593928/vuzlit_336x280_2’, div_336x280, ‘div-336x280_2’).addService(googletag.pubads());
googletag.defineSlot(‘/21931593928/vuzlit_336x280_3’, div_336x280, ‘div-336x280_3’).addService(googletag.pubads());
googletag.defineSlot(‘/21931593928/vuzlit_336x280_btm’, div_650x333, ‘div-336x280_btm’).defineSizeMapping(map650x333).addService(googletag.pubads());
googletag.pubads().enableSingleRequest();
googletag.pubads().collapseEmptyDivs();
googletag.enableServices();
});

googletag.cmd.push(function() {
// not render hided ads according grid css
var map300x600 = googletag.sizeMapping().addSize([768, 0], div_300x600).addSize([0, 0], []).build();
var map970x90 = googletag.sizeMapping().addSize([992, 0], div_970x90).addSize([768, 0], [[728, 90]]).addSize([0, 0], []).build();

googletag.defineSlot(‘/21931593928/vuzlit_970x90’, div_970x90, ‘div-970×90’).defineSizeMapping(map970x90).addService(googletag.pubads());
googletag.defineSlot(‘/21931593928/vuzlit_970x90_btm’, div_970x90, ‘div-970x90_btm’).defineSizeMapping(map970x90).addService(googletag.pubads());
googletag.defineSlot(‘/21931593928/vuzlit_300x600’, div_300x600, ‘div-300×600’).defineSizeMapping(map300x600).addService(googletag.pubads());
googletag.defineSlot(‘/21931593928/vuzlit_300x600_sticky’, div_300x600, ‘div-300x600_sticky’).defineSizeMapping(map300x600).addService(googletag.pubads());
googletag.defineSlot(‘/21931593928/vuzlit_rich’, [1, 1], ‘div-rich’).addService(googletag.pubads());
googletag.pubads().enableSingleRequest();
googletag.enableServices();
});

< Пред

 

СОДЕРЖАНИЕ

  Загрузить 

След >

Паутинообразный перелом формируется при воздействии твердого тупого предмета с широкой травмирующей частью (удар, падение) с большой энергией. При этом происходит прогибание травмируемой кости (костей) с образованием, в первую очередь, непрерывных радиальных трещин и затем последовательно образуется один или более уровней концентрических прерывистых трещин. Костные фрагменты первого уровня имеют неправильно-треугольную форму, второго и далее – неправильно-трапециевидную.В центральной части на наружной костной пластинке по краям трещин обнаруживаются скол и выкрашивание компактного вещества, на внутренней пластинке, в соответствующих участках края ровные (место первичного контакта). Между радиальными трещинами располагается два ряда концентрических прерванных трещин (соединяются с радиальными на разных уровнях – признак “ступеньки”). Первый ряд находится примерно на … см от центральной части и образует с радиальными трещинами костные фрагменты неправильно-треугольной формы. Второй ряд отстоит от первого на … см и образует с радиальными трещинами и первыми концентрическими костные фрагменты неправильно-трапециевидной формы. Края концентрических трещин на наружной костной пластинке относительно ровные и прямоугольные, на внутренней – со сколом и выкрашиванием компактного вещества. По краям концентрических трещин первого уровня обнаруживаются участки скола и выкрашивания компактного вещества на наружной пластинке – признаки повторной травматизации.

  • 1. Локализация: название кости (костей).
  • 2. Радиальные трещины: количество (по номерам), направление (по циферблату часов), непрерывность, распространение на соседние кости и на основание, место их схождения (указать точную локализацию: расстояние от срединной линии и ближайшего межкостного шва – место контакта травмирующего предмета), характеристика краев на наружной и внутренней пластинках на всем протяжении.
  • 3. Концентрические трещины: расстояние от центра (места схождения радиальных) до каждого их уровня, между какими радиальными трещинами (здесь хорошо помогут номера радиальных трещин), смещение между соседними концентрическими трещинами (признак “ступеньки”), свойства краев на наружной и внутренней пластинках (часто наличие признаков повторной травматизации на трещинах предыдущего уровня).
  • 4. Форма костных фрагментов: в центре обычно треугольная, к периферии трапециевидная.

Пример описания перелома. В правой теменно-височно-заты-лочной области (на участке … х … см), многофрагментарно-ос-кольчатый перелом. При сопоставлении фрагментов определяются четыре радиальные трещины, которые сходятся на границе теменной и чешуе затылочной костей (место контакта), в … см от сагиттального шва: первая от места соединения идет на 12 ч по циферблату и переходит на …; вторая – на 3 ч по циферблату, проходит по теменной кости и заканчивается у правой ветви венечного шва; третья – на 6 ч по циферблату и распространяется на основание черепа …; четвертая – на 9 ч по циферблату, распространяется по чешуе затылочной кости, на ее левую половину… Края этих трещин на обеих костных пластинках относительно ровные.

 

Источник

Введение

Согласно нашим исследованиям смертельная черепно-мозговая травма составляет 10% от всех экспертиз по г. Барнаулу. Из них ударное воздействие по голове (убийства и транспортная травма) составили 78,8%, остальные были представлены травмой от падения (падение с высоты и на плоскости – 11,2% и 10% соответственно). Из всего числа подобной травмы переломы костей черепа встречались в 52,4%. Обычно возникает необходимость дифференцировать действие широкой ударяющей поверхности при падении и ударе. В таких случаях чаще всего формируются идентификационно малопригодные линейные и паутинообразные переломы черепа. Необходимость установления различий подобных травм вызвана важностью решения этого вопроса для судебно-следственных органов. Однако до сих пор в экспертной практике весьма распространен шаблонный вывод о механизме формировании перелома «как от удара твердым тупым предметом, так и при падении и ударе о таковой».

Наша работа является продолжением этой давней судебно-медицинской дискуссии о возможностях дифференцировки повреждений возникающих при ударе и падении. Изучению подобных переломов черепа посвящено достаточно большое число работ [1, 2, 3, 4, 5, 6]. Одни авторы объясняли различия в формировании переломов черепа, влиянием кривизны кости и приданым ускорением [7, 8], другие говорили о жесткости поверхности соударения и силе удара [9].

Основная часть

Берясь за решение этого вопроса, мы стремились получить внятное теоретическое обоснование возможностей решения этой проблемы, на основании которой можно было бы выработать экспертный подход для подобных исследований.

Любой перелом это результат взаимодействия свойств ударяющей поверхности (площадь, форма, твердость) и условий нагружения (масса, скорость, направление) с конструкционными (зона форма, рельефность) и локальными (плотность и кривизна компакты, толщина диплоэ) уровнями прочности черепа [10]. Анализируя основные составляющие возникновения переломов черепа, мы пришли к выводу, что растрескивание черепа в результате падения и удара о твердую поверхность в большей степени зависит от условий нагружения [11]. Большую роль в формировании морфологических особенностей переломов черепа играет его строение и в первую очередь степень его рельефности [12] (что требует отдельного рассмотрения).

Согласно данным теоретической механики, масса движущейся точки равна массе всего тела [13]. Следовательно, масса взаимодействующих объектов при ударе предметом по голове исчисляется килограммами, а при ударе головой в результате падения она уже соответствует многим десяткам килограммов.

Учитывая скорость нагружения при ударе и свободном падении (метры в секунду) очевидно, что она в обоих случаях меньше скорости отклика системы [14]. С учетом различий в массе головы можно легко сделать приблизительные расчеты их разрушающей энергии, которая будет различаться на порядок (в первом десятки, а во втором сотни джоулей).

Сравнивая направление нагрузки , что при ударе она всегда перерастает в инерционное ускорение головы, что постепенно гасит травмирующую энергию на уровне контактных деформаций. Тогда как при падении (из-за невозможности смещения опоры) мгновенно приложенная нагрузка затухает за счет инерции торможения. Это ведет к выраженной деформации всего черепа.

Экспериментальное подтверждение: Для имитации зон контакта от удара и падения по шару из пластической массы, наносили удар широкой плоским предметом большой твердости. Через 20см полета (не меняя скорости) шар упирался в преграду аналогичных характеристик. Начало движения было относительно плавным, а торможение сопровождалось зависанием шара на опоре. Изучение участков его остаточной деформации показало, что уплощение от первого (инерции ускорения) воздействия был в полтора раза меньше второго (инерции торможения). Кроме того, первый след сохранил некоторую округлость поверхности, тогда как второй был абсолютно плоским, а за пределами зоны контакта отмечалось волнообразное смятие образца. Все это доказывало, что объем деформации при ударе меньше и носит более локальный характер, нежели при падении.

Изучая морфологические особенности перелома черепа, было установлено, что любой перелом локально-конструкционного характера (при падении или ударе) имеет три зоны: прогиба, разрыва и участка сложных деформаций с расщеплением кости.

Таблица 1

Отличия линейных переломов, возникающих от удара и падения на плоскости

Условия

Показатели

прогиб

разрыв

расщепление

Теменно-затылочная область

Удар

Длина (см)

До 2,0

3-4

Перед max. кривизн.

Отклонение (градус)

900

870-530

510-420

Падение

Длина (см)

2,5-3,0

2-4

После max. кривизн.

Отклонение (градус)

900

500-400

Менее 400

Теменно-височная область

Удар

Длина (см)

До 2,0

3-4

Перед max. кривизн.

Отклонение (градус)

900

700-530

510-450

Падение

Длина (см)

2,5-3,0

2-4

После max. кривизн.

Отклонение (градус)

900

520-470

510-450

В результате было установлено, что при ударе зона прогиба закономерно короче (до 2,0 см), чем при падении (более 2,0см), хотя длина зон разрыва у них примерно одинаковая. Зона расщепления при ударе всегда расположена перед областью максимальной кривизны кости, тогда как при падении на плоскости после этого участка, что представлено в таблице 1.

Представленные данные подтверждают, что в сравнении с падением на плоскости при ударном воздействии по голове повреждения носят более «локальный» характер.

Если при воздействии в теменно-затылочную и теменно-височную области формируется паутинообразный перелом, то независимо от варианта первичного растрескивания наблюдается картина, представленная в таблице 2.

Таблица 2

Отличия в расположении концентрических и дугообразных трещин паутинообразных переломов, возникающих от удара и падения

Условия

Виды трещин

Расположение

Удар

Концентрическая трещина

До максимальной кривизны

Магистральная радиальная

По плоским участкам

Падение

Концентрическая трещина

По максимальной кривизне

Магистральная радиальная трещина

По участкам максимальной кривизны

Из полученных результатов следует, что при ударе предметом по голове радиальные трещины обычно свободно распространялись на площади в пределах одной кости, редко вырываясь за ее пределы. Концентрические трещины обычно ограничивают распространение радиальных на плоском участке перед ребром жесткости свода черепа. Это выражается в меньшей площади паутинообразного перелома (от эпицентра удара до первого ряда концентрических трещин) при ударе, в сравнении с падением.

Кроме того, при падении на плоскости радиальные трещины легко распространяются вплоть до участков наибольшей кривизны (теменных бугров, височных линий), т.е. по самому ребру жесткости. Это позволяет зарождаться концентрическим трещинам дальше от места удара, что увеличивает площадь паутинообразного перелома первого порядка. От этих образований часто отходят дополнительные радиальные трещины второго порядка, часть из них распространяется на противоположную область черепа, также проходя через участки с максимальной кривизной кости.

Одним из значимых различий образования переломов при таких условиях является характер микроразрушения свода черепа. В результате удара от падения на своде микротрещины формировались как в местах непосредственного воздействия (теменно-затылочная и теменно-височная области), так и на отдалении (теменные бугры височные ямки).

Отмечено, что в отличие от падения удар формирует сравнительно меньшее количество микротрещин, и они расположены только в зоне контакта.

Другим значимым отличием падения являются изолированные трещины основания черепа в передней и средних черепных ямках.

Эти короткие трещины образуются в центральных областях передней черепной ямки с повреждением верхней стенки пазухи основной кости и в области обеих верхних стенок глазниц. Иногда эти трещины локализуются на теле и крыльях основной кости, реже на скате затылочной кости, надглазничных областях и решетчатой кости.

При ударе твердым тупым предметом в затылочную область подобные трещины не образуются.

Большое внимание следует уделять изучению магистральной трещины основания черепа. При падении она состоит из нескольких сливающихся трещин конструкционного характера, с общим направлением из центральных отделов основания черепа к месту контакта. Этот перелом как бы разделяет основание черепа на две половины, что напоминает перелом от сдавливания черепа. (У этих переломов действительно весьма схожий механизм уплощения черепа при контакте с встречающей опорой.)

При ударе, как правило, имеется лишь одна трещина локального характера, ориентированная от места контакта к основной кости. Нередко по ходу она может ветвиться, концы этих ответвлений затухают в естественных отверстиях или участках упрочения основания черепа.

Заключение

В дополнение к установленным различиям не следует забывать и о других возможных отличиях. Во-первых, удары обычно наносятся ограниченным объектом, что формирует разные варианты локальных переломов (дырчатый, вдавленный, и пр.) Тогда как падение происходит на относительно широкой плоскости и его характеризуют конструкционные переломы (линейные, паутинообразные). Во-вторых, если падение было на ограниченный объект, то обычно это сопровождается формированием скальпированных ран (из-за сферической формы свода черепа, относительно низкой скорости свободного падения, касательного направления вектора нагрузки). В-третьих, при падении на плоскости для формирования травмы мозгового черепа наиболее типичными следует считать падение навзничь – на спину (с ударом теменно-затылочной областью) или на бок (удар теменно-височной областью). Другие ситуации можно исключить, так как падение вперед лицом (ничком), обычно относится к координированным видам, что практически исключает формирование переломов мозгового черепа. Особое место занимает падение с большой высоты на теменные области головы, когда происходит осевое сдавливание головы между туловищем и встречающей опорой с формированием двух встречных паутинообразных растрескиваний свода и основания.

Таким образом, использование предлагаемых данных, позволит эксперту с высокой долей вероятности установить вид травмы и сделать вполне обоснованные выводы об условиях формирования перелома черепа.

Библиография

  1. Гедыгушев И.А. Судебно-медицинская оценка повреждений мягких тканей головы и костей свода черепа при установлении особенностей травмирующего тупого твердого предмета: Автореф. дис. канд.-М.., 1986
  2. Громов А.П.
    Биомеханика травмы (повреждения головы, позвоночника, грудной клетки). – М.: Медицина, 1979, 275с.
  3. Крюков В.Н.
    Механика и морфология переломов. – М: Медицина, 1986 г., 160 с.
  4. Крюков В.Н. Основы механо-и морфогенеза переломов. – М.: Фолиум, 1995. – 232 с.
  5. Плаксин В.О. Судебно-медицинская оценка механизмов множественных переломов свода черепа при травме тупыми предметами: Дис. … д-ра мед. наук. – М., 1996. – 204 с.
  6. Попов В.Л.
    Черепно-мозговая травма. – Л.: Медицина, 1988. – 240 с.
  7. Волох Д.Ю. Судебно-медицинская оценка повреждений затылочной области головы при действии твердых тупых предметов – Автореф. дис. … канд. мед. наук. – Москва, 1991. – 25 с.
  8. Дербоглав В.В.
    Судебно-медицинская оценка повреждений костей черепа в зависимости от условий падения на плоскость и характера поверхности соударения: Автореф. дис. … канд. мед. наук. – М., 1975. – 22 с.
  9. Якунин С.А. Дифференциальная диагностика повреждений теменно-затылочной области головы у практически здоровых лиц // Проблемы экспертизы в медицине. – 2002. – № 4. – С. 3-7.
  10. Шадымов А.Б. Анатомо-морфологическая характеристика черепа, как прочностной конструкции // Проблемы экспертизы в медицине. Научно-практический журнал. – Ижевск, 2005.-В1.-С. 9-14.
  11. Шадымов
    А.Б. Переломы черепа. – Барнаул: 2009. – 332 с.
  12. Шадымов А.Б. Судебно-медицинское определение механогенеза и идентификационной пригодности переломов черепа при основных видах внешнего воздействия // Дисс. Докт.мед.наук – Москва, 2006, 365с.
  13. Тарг С.М. Краткий курс теоретической механики. М., Наука.,1967.478с.
  14. Бартенев Г.М., Зеленев Ю.В. Курс физики полимеров. – под ред. Проф. С.Я. Френкеля. Л.: Химия, 1976. – 128 с.

References (transliterated)

  1. Gedygushev I.A. Sudebno-meditsinskaya otsenka povrezhdenii myagkikh tkanei golovy i kostei svoda cherepa pri ustanovlenii osobennostei travmiruyushchego tupogo tverdogo predmeta: Avtoref. dis. kand.-M.., 1986
  2. Gromov A.P. Biomekhanika travmy (povrezhdeniya golovy, pozvonochnika, grudnoi kletki). – M.: Meditsina, 1979, 275s.
  3. Kryukov V.N. Mekhanika i morfologiya perelomov. – M: Meditsina, 1986 g., 160 s.
  4. Kryukov V.N. Osnovy mekhano-i morfogeneza perelomov. – M.: Folium, 1995. – 232 s.
  5. Plaksin V.O. Sudebno-meditsinskaya otsenka mekhanizmov mnozhestvennykh perelomov svoda cherepa pri travme tupymi predmetami: Dis. … d-ra med. nauk. – M., 1996. – 204 s.
  6. Popov V.L. Cherepno-mozgovaya travma. – L.: Meditsina, 1988. – 240 s.
  7. Volokh D.Yu. Sudebno-meditsinskaya otsenka povrezhdenii zatylochnoi oblasti golovy pri deistvii tverdykh tupykh predmetov – Avtoref. dis. … kand. med. nauk. – Moskva, 1991. – 25 s.
  8. Derboglav V.V. Sudebno-meditsinskaya otsenka povrezhdenii kostei cherepa v zavisimosti ot uslovii padeniya na ploskost’ i kharaktera poverkhnosti soudareniya: Avtoref. dis. … kand. med. nauk. – M., 1975. – 22 s.
  9. Yakunin S.A. Differentsial’naya diagnostika povrezhdenii temenno-zatylochnoi oblasti golovy u prakticheski zdorovykh lits // Problemy ekspertizy v meditsine. – 2002. – № 4. – S. 3-7.
  10. Shadymov A.B. Anatomo-morfologicheskaya kharakteristika cherepa, kak prochnostnoi konstruktsii.//Problemy ekspertizy v meditsine. Nauchno-prakticheskii zhurnal. – Izhevsk, 2005.-V1.-S. 9-14.
  11. Shadymov A.B. Perelomy cherepa / Barnaul: 2009. – 332 s.
  12. Shadymov A.B. Sudebno-meditsinskoe opredelenie mekhanogeneza i identifikatsionnoi prigodnosti perelomov cherepa pri osnovnykh vidakh vneshnego vozdeistviya// Diss. Dokt.med.nauk – Moskva, 2006, 365s.
  13. Targ S.M. Kratkii kurs teoreticheskoi mekhaniki. M., Nauka.,1967.478s.
  14. Bartenev G.M., Zelenev Yu.V. Kurs fiziki polimerov. – pod red. Prof. S.Ya. Frenkelya. L.: Khimiya, 1976. – 128 s.

Источник

Читайте также:  Двусторонний перелом челюсти фото