Изгиб поворот перелом

ЭПЮРЫ ИЗГИБАЮЩЕГО МОМЕНТА (продолжение)
В продолжение темы и лучшего усвоения материала предложим Вам следующие примеры.
Балка, опертая по концам (рис.2), но сила внешнего воздействия сместилась к одному из концов балки. Из пройденного материала известно, что при простом изгибе балки, опертой по концам, при изгибе ее под воздействием сосредоточенной силы, эпюры максимальных сжимающих и растягивающих напряжений симметричны (ось симметрии проходит через точки опирания балки, то есть через балку до ее деформации) (рис.1).
Рис.1. Опертая по концам балка, симметричное нагружение
Поэтому, чтобы не загружать схему, рассмотрим только эпюру растягивающих напряжений. Строим эпюру максимальных растягивающих напряжений, реализующихся по длине балки: проецируем «главные действующие лица» (точки опоры и место приложения силы) на горизонтальную ось, от точки проекции силы откладываем ее значение (длину) по вертикали и соединяем полученные три точки…(рис.2).
Рис. 2. Построение эпюры максимальных растягивающих напряжений (балка, опертая по концам, несимметричное нагружение)
Непонятно? Предлагаю использовать способ построения эпюры при помощи резинки… Крепим резинку к двум точкам опоры и давим на нее пальцем (рис.3). Получаем эпюру максимального растягивающего напряжения по длиннику балки (самое интересное, что данный способ математически верен)!
Рис.3
До этого мы рассматривали, как выглядят максимальные эпюры сжатия и растяжения вдоль оси рассматриваемой балки. Как выглядят эпюры сжатия и растяжения в перпендикулярном сечении, то есть, как выглядит топография напряжений сжатия и растяжения в поперечнике балки (сверху вниз)?
Увеличим балку до цилиндра, переведя ее из схемы в «реальный» объект (рис. 4, б). По нижнему краю цилиндра при изгибе формируются растягивающие напряжения (схема на рис. 4, а), по верхнему краю (из пройденного материала) – сжимающие напряжения. Чтобы сформировалось сжатие, напряжения должны быть направлены к середине балки, а что бы сформировалось растяжение – напряжения должны быть направлены за пределы балки.
Рис.4. Балка, опертая по концам, несимметричное нагружение
Почему вектора напряжений (стрелки красного и синего цвета) на рисунке «4 в» только с одного конца цилиндра – спросите Вы? Все верно, с другого конца цилиндра можно расположить аналогичные стрелки красного и синего цвета, симметрично (относительно вертикальной оси) направив красные кнутри, а синие (растягивающие) кнаружи (см. рис.4 б). Однако, вспомнив ранее изложенный материал на простое растяжение и сжатие, вы легко поймете, что достаточно одной пары групп стрелок. В зоне направления красных стрелок (векторов) на всем протяжении будет реализовываться сжатие, а в зоне синих – растяжение.
Внимательный читатель давно обратил внимание, что вектора напряжений, как сжимающих, так и растягивающих, имеют наибольшую величину по верхнему и нижнему (соответственно) краям цилиндра, а ближе к центру происходит их уменьшение. Нулевая точка соответствует оси симметрии балки. Действительно, при деформациях внутренние слои испытывают минимальные напряжения и деформации.
Этой особенностью концентрации напряжений активно и умело пользуется природа, обеспечивая минимальный вес конструкции при максимальной прочности. Зачем делать из прочного материала внутренние слои какой-либо конструкции, если эти слои не подвергаются, а значит и не противостоят внешнему воздействию и деформации? Конечно, там лучше убрать материал вовсе! В результате в биологии мы получаем, например диафиз трубчатой кости, а в строительстве швеллер, двутавр и т.д.
Высота треугольника эпюры зависит от величины приложенной силы, в нашем случае, достаточно абстрактной. Тем не менее, если силу мы уменьшим в два раза, настолько же уменьшится и высота треугольника эпюры (рис.5).
Рис.5. Балка, опертая по концам, несимметричное нагружение
А что происходит в реальности? Правильны ли наши умозаключения?
Метод конечных элементов, компьютерное моделирование позволяют увидеть топографию напряжений.
Пример. Рассматривается кость, фиксированная головками к упругой подложке. По кости в средней ее части осуществляется воздействие острого индентора. На рисунке 6 приводятся результаты математического моделирования методом конечных элементов процесса разрушения кости (это один из слайдов).
Пусть Вас не пугает смена цветов (на схемах выше мы сжатие отмечали красным, а растяжение синим). Компьютерная программа (если не изменять настроек) наиболее критические состояния отмечает (а они в данном случае в зоне растяжения) оттенками красного цвета.
Рис. 6. Внедрение индентора под углом 90°. Оттенками красного отмечены растягивающие напряжения, оттенками синего – сжимающие
Как такой перелом выглядит в реальности? На рисунке 7 представлен полный поперечный (безоскольчатый) перелом большеберцовой кости. Удар нанесен по гребню большеберцовой кости сосредоточенной силой – острым индентором (средней частью лезвия топора).
Рис.7. Полный поперечный перелом большеберцовой кости (действие острого индентора)
Сосредоточенная сила… кто-то из практических экспертов скажет: «да где ее встретишь, ну тупой топор и что-нибудь подобное…ты нам бампер подавай».
Давайте попробуем разобраться в этом вопросе вместе. Представим, что наезд на пешехода произошел сзади (рис. 8).
Рис. 8. Наезд ТС на пешехода сзади
Упрощаем задачу, приняв, что силы трения и инерции тела в сравнении с импульсом удара бампера формируют прочную фиксацию обоих концов балки (ноги), но суставы обеспечивают возможность поворота как минимум в одной плоскости, а бампер автомобиля прямоугольной формы, шириной, например в зоне контакта 5-6 см.
Рассмотреть взаимодействие балки и предмета, которые имеют определенную форму и размеры достаточно сложно. В сопромате этот сложный процесс называется контактной задачей. При ее решении приходится учитывать и силы трения, и форму контактирующих поверхностей. Чтобы упростить такую сложную задачу, заменим бампер группой сил, действующими на определенном ограниченном участке (рис.9).
Рис. 9. Построение схемы нагружения
Как будет выглядеть эпюра максимальных растягивающих напряжений в этом случае? Напряжения некоторым образом суммируются, и вершина треугольника получается сглаженной (рис.10)
Рис. 10.
Непонятно? Предлагаю призвать на помощь резинку… Крепим резинку к двум точкам опоры и сыпем на нее песок (с единственным допущением, что он распределяется на строго определенном нами участке, соответствующем границам крайних сил и не пересыпается за пунктирные линии рисунка) (рис.11). Получаем эпюру максимального растягивающего напряжения по длиннику балки! (и этот способ математически верен!).
Рис.11.
Из построенных эпюр видно, что прогнозируемая зона разрыва должна реализоваться в области «сглаженной» вершины, которую мы вам дали на схеме с «увеличением» на рисунке 9.
А что же происходит на поверхности балки со стороны воздействия индентора? Эпюра напряжений в области контакта индентора и балки имеет следующий вид (рис.12):
Рис. 12
Верны ли наши рассуждения? Сравним наши данные с данными моделирования процесса нагружения балки тупым (прямоугольным) индентором. На рисунке 13 наглядно демонстрируются поля напряжений, как в зоне растяжения, так и в зоне сжатия (использованная программная среда не отличает растяжение и сжатия; синим цветом и его оттенками отмечены зоны «спокойствия», а оттенками красного – «критические» участки). Для наглядности к картине полей напряжений мы «прикрепили» индентор и точки опирания.
Рис.13
Теперь рассмотрим процесс формирования перелома. В зоне наибольшего растяжения, где-то в области сглаженной вершины, построенной нами, появляются микроразрушения (рис.14,а). Микроскопические разрушения объединяются, и формируется разрыв. Зарождение и разрыв… полукруглая блестящая мелкозернистая поверхность с отвесными краями дает развитие магистральной трещине, появляются касательные напряжения (к ним мы обратимся обязательно, но чуть позже), направленные под углом 45° к нормали. Формируется поверхность излома, на которой регистрируются рубцы в виде шевронов, елочки и т.д. … Куда идти трещине? (на рисунке 14,б мы ее отметили зеленым цветом).
Рис.14.
Ровно посредине кости зона растяжения сменяется зоной сжатия (см. рис.3 – эпюра в виде «двух треугольников»). На рисунке 1, и, соответственно в первом абзаце, мы приняли как аксиому, что эпюры максимальных сжимающих и растягивающих напряжений симметричны. Поэтому эпюра максимального сжимающего напряжения аналогична эпюре растягивающего напряжения и имеет форму в виде треугольника со скругленной вершиной (рис.15).
Рис.15.
Трещина, определяясь с направлением развития, решает проблему самым энергетически выгодным способом – идет по пути наименьших затрат.
Движение по пути наименьшего сопротивления. Направление наименьшего сопротивления соответствует точкам опоры (поскольку на всем пути напряжения растягивающие, зоны сжатия, которые необходимо преодолевать, не встречаются), но расстояние при этом, которое предстоит преодолеть трещине, наибольшее (рис.16).
Рис.16.
Движение по наикратчайшему пути. Самое короткое расстояние для пересечения толщи кости – это путь от зоны разрыва к точке контакта с индентором (рис.17). Но здесь располагается зона наибольшего сжатия (то же не выгодно). Выход простой – эту зону надо обойти.
Рис.17.
Трещина принимает соломоново решение (между «расстоянием» и «сопротивлением»): она берет направление близкое к 45° к длиннику кости (рис.18)
Рис.18.
А как же индентор и локальное нагружение? Локальное нагружение трещина воспринимает совершенно реально и обходит его тоже (рис.19).
И если нагружение симметричное, трещина раздваивается и формирует треугольный отломок (рис.19,а), а если не симметричное – косой перелом (рис.19,б) (несимметричное нагружение может быть вызвано отклонением силы от перпендикулярной оси, изменением сечения кости, условиями опирания, всем тем, чего в биосистемах больше, чем достаточно).
Рис.19.
В итоге, получаем перелом (рис.20), подобный изображенному на рисунке 19,а.
Рис. 20.
Источник
Перелом со смещением – это нарушение целостности кости, при котором отломки утрачивают свое правильное положение и смещаются относительно друг друга. Проявляется деформацией и/или укорочением, реже – удлинением конечности. Существуют различные виды смещения, в том числе – по оси, по длине, ротационное и угловое. Диагноз подтверждают при помощи рентгенографии, при необходимости используют КТ, МРТ, артроскопию и другие исследования. Для устранения смещения проводят одномоментную репозицию, накладывают скелетное вытяжение или применяют различные оперативные методики.
Общие сведения
Перелом со смещением – перелом, при котором нарушается нормальное расположение отломков. Смещение возникает вследствие травмирующего воздействия или из-за тяги мышц. Может образовываться на любом участке любой кости, практически всегда наблюдается при переломах диафизов длинных трубчатых костей, часто выявляется при внутрисуставных и околосуставных повреждениях.
Переломы со смещением могут быть как изолированными, так и множественными. Нередко диагностируются в составе сочетанной травмы (политравмы), могут сочетаться с тупой травмой живота, ЧМТ, повреждением почки, повреждением грудной клетки, разрывом мочевого пузыря и другими травматическими повреждениями. Иногда осложняются сдавлением или нарушением целостности нервов и сосудов. Лечение переломов со смещением осуществляют травматологи-ортопеды.
Перелом со смещением
Причины
Причиной перелома со смещением может стать спортивная, бытовая или производственная травма, падение с высоты, автодорожное происшествие, криминальный инцидент или природная катастрофа.
Патанатомия
Смещение – один из важнейших признаков большинства переломов. Выраженность смещения может существенно варьировать – от незначительного, не представляющего угрозы для формы и функции конечности, до грубого, сопровождающегося резким искривлением и укорочением сегмента. Смещение может быть вызвано первичными либо вторичными причинами. Первичной причиной является воздействие, вызвавшее перелом. К числу вторичных причин относятся рефлекторное сокращение и эластическая ретракция мышц, изменение положения отломков в результате неправильного подъема, перевозки или переноски пострадавшего.
Различают несколько типов смещения. При угловом смещении в области излома образуется угол. Этот тип смещения встречается при всех видах диафизарных переломов, может быть обусловлен непосредственно травмирующим воздействием, но в большинстве случаев возникает вторично, под действием мышечной тяги. Боковое смещение характеризуется расхождением костных фрагментов в разные стороны, такой тип смещения чаще наблюдается при поперечных переломах.
Смещение по длине встречается наиболее часто и сопровождается скольжением одного отломка относительно другого в направлении оси кости. Возникает при сокращении мышц, сопровождается выраженным укорочением конечности. Смещение по периферии наблюдается реже и происходит в результате поворота одного из фрагментов вокруг своей оси. Чаще «разворачивается» периферический отломок. Нередко несколько типов смещения сочетаются друг с другом, образуя сложные комбинированные варианты.
Классификация
С учетом механизма повреждения переломы со смещением делятся на:
- Переломы от сжатия или сдавления. Образуются при воздействии на кость в поперечном или продольном направлении. Трубчатые кости чаще повреждаются при сдавлении в поперечном направлении, при этом линия излома обычно проходит между диафизом и метафизом, более узкий диафиз внедряется в метафиз, а метафиз и эпифиз сплющиваются. В ряде случаев такие переломы не сопровождаются выраженным смещением, однако возможно и грубое нарушение взаиморасположения отломков вплоть до раздробления и полной утраты конгруэнтности суставных поверхностей.
- Переломы от сгибания. Могут возникать в результате непрямого или прямого воздействия. На выпуклой стороне кости при попытке ее сгибания появляется несколько трещин, идущих в различных направлениях. При превышении предела упругости кость ломается, нередко образуя отломок в форме клина, расположенный между двумя большими костными фрагментами.
- Переломы от скручивания (торзионные). Возникают при фиксации одного из концов кости и одновременном развороте другого конца по оси. Чаще образуются в больших трубчатых костях (большеберцовой, плечевой, бедренной). Подобные повреждения могут стать следствием резкого выкручивания руки («полицейский» перелом диафиза плеча), падения во время катания на лыжах (винтообразный перелом костей голени) и т. д.
- Отрывные переломы. Иногда возникают при разрывах связок. Сопровождаются отрывом небольших участков кости, к которым крепятся связки и сухожилия. При этом отломок, как правило, удаляется на значительное расстояние, и самостоятельное сращение становится невозможным.
С учетом направления линии излома по отношению к оси кости в травматологии и ортопедии различают переломы:
- Поперечные – плоскость излома расположена поперечно. Такие повреждения обычно возникают в результате прямой травмы, для них характерна зазубренная, неровная линия излома. Возможно сочетание поперечного перелома с продольной трещиной (Y- или T-образные переломы), такие повреждения обычно образуются в нижних эпифизах большеберцовой, бедренной и плечевой костей.
- Продольные – плоскость излома совпадает с осью кости. Выявляются редко, иногда являются частью околосуставных или внутрисуставных T-образных повреждений.
- Спиральные или винтообразные – плоскость излома проходит спирально, на одном отломке образуется заостренный край, на другом – впадина такой же формы. Возникают вследствие скручивания кости вокруг своей оси, например, при выкручивании конечности.
- Косые – плоскость излома проходит под углом к оси кости. Обычно торец отломка гладкий, без крупных зазубрин. Костные фрагменты имеют острые углы, один фрагмент «заходит» за другой, на рентгеновских снимках в одной проекции кажется, что отломки стоят нормально, а на втором выявляется их выраженное смещение.
С учетом локализации выделяют следующие виды переломов:
- Эпифизарные (внутрисуставные). Обычно возникают в результате непрямого воздействия, например, скручивания конечности в сочетании с одновременным движением в суставе. Часто сопровождаются значительным смещением суставных концов и нарушением конфигурации сустава. Возможно сочетание с вывихом. В ряде случаев наблюдается стойкое ограничение подвижности в отдаленном периоде. Разновидностью эпифизарных переломов является эпифизеолиз – отрыв эпифиза в области хрящевой прослойки (зоны роста) у детей. Нарушение конфигурации суставных поверхностей при эпифизеолизах отсутствует, может наблюдаться угловое смещение.
- Метафизарные (околосуставные). Возникают при сдавлении по оси, сопровождаются внедрением одного отломка в другой. Смещение при таких повреждениях наблюдается крайне редко.
- Диафизарные. Самые распространенные переломы. Могут возникать в результате как прямого, так и непрямого воздействия: удара, падения, скручивания, сдавления и т. д. В абсолютном большинстве случаев сопровождаются более или менее выраженным смещением, обусловленным механизмом травмы и/или сокращением мышц, которые «тянут» за собой отломки костей, нарушая их правильное взаиморасположение.
Переломы со смещением могут быть открытыми и закрытыми. Открытые переломы сопровождаются нарушением целостности кожных покровов, при закрытых переломах кожа над областью перелома остается неповрежденной. В большинстве случаев рана возникает при повреждении кожи острым краем сместившегося отломка. Если рана появилась в момент травмы, перелом называют первичнооткрытым. В случаях, когда рана образовалась вследствие смещения костных фрагментов при подъеме, переноске или перевозке пострадавшего, перелом относят к категории вторичнооткрытых.
Симптомы перелома
В момент травмы возникает резкая взрывная невыносимая боль в области перелома, нередко – в сочетании с костным хрустом. В последующем болевые ощущения несколько утихают, однако сохраняют высокую интенсивность. Обычно выявляется визуально заметная деформация поврежденного сегмента, отмечается патологическая подвижность. Наблюдается быстро нарастающий отек. В зоне поражения могут обнаруживаться кровоподтеки, раны или ссадины.
Осложнения
Чем больше расстояние между сместившимися фрагментами кости, тем хуже они срастаются. При нерепонированных и плохо репонированных переломах часто наблюдается замедленное сращение и образование ложных суставов, формируется грубая костная мозоль, в отдаленном периоде выявляется нарушение оси, длины, формы и функции конечности. Любой тип смещения может сопровождаться ущемлением или повреждением нервов и сосудов. При отсутствии своевременной помощи последствием травмы сосудисто-нервного пучка могут стать нарушения кровообращения, парезы, параличи и нарушения чувствительности. Ущемление мягких тканей (обычно мышц) между отломками может препятствовать нормальному сращению перелома.
Диагностика
Для постановки диагноза используют данные осмотра и результаты рентгенографии. Обычно назначают снимки в двух проекциях (боковой и прямой). При некоторых переломах со смещением применяют дополнительные проекции (косые, в специальных укладках). Для детального изучения плотных структур назначают КТ кости, для оценки состояния мягких тканей – МРТ. При некоторых внутрисуставных переломах назначают артроскопию. При подозрении на повреждение нервов и сосудов пациентов направляют на консультации к неврологу и сосудистому хирургу.
Лечение перелома со смещением
Лечение предусматривает обязательное устранение смещения – это позволяет обеспечить нормальное сращение костных фрагментов, восстановить внешний вид и функцию пострадавшего сегмента. Восстановление положения отломков может быть одномоментным или постепенным, консервативным или оперативным. Одномоментная репозиция производится под местной анестезией или общим наркозом и включает в себя ряд приемов, перечень которых зависит от локализации перелома и типа смещения. После вправления врач накладывает гипс и назначает контрольную рентгенографию.
Постепенная закрытая репозиция осуществляется с использованием скелетного вытяжения. Через кость дистального сегмента конечности проводят спицу, к ней прикрепляют скобу, к скобе подвешивают груз. Вес груза рассчитывают с учетом вида перелома, веса и состояния мускулатуры пострадавшего. При переломах бедра спицу проводят через бугристость большеберцовой кости, при переломах голени – через пяточную кость, при переломах плеча – через локтевой отросток. В процессе вытяжения делают контрольные снимки и при необходимости корректируют положение отломков, уменьшая или увеличивая груз, переводя конечность в другое положение (например, отводя в сторону) или добавляя боковую тягу. Вытяжение сохраняют до образования первичной мозоли, а затем заменяют гипсом.
Абсолютным показанием к оперативному лечению переломов со смещением является интерпозиция мягких тканей, сдавление сосудов и нервов, неудачная одномоментная репозиция и невозможность сопоставления отломков с использованием скелетного вытяжения. Список относительных показаний к хирургическому вмешательству при переломах со смещением достаточно широк, поскольку этот метод лечения позволяет обеспечить раннюю активизацию больных, предотвратить развитие посттравматических контрактур и осложнений, связанных с длительной малоподвижностью.
Операции обычно выполняют под общим наркозом или проводниковой анестезией. Возможно проведение очагового или внеочагового остеосинтеза. При очаговом остеосинтезе врач делает разрез в зоне перелома, отодвигает в стороны мягкие ткани, сопоставляет отломки руками или при помощи специальных приспособлений и устанавливает металлоконструкцию на кость или в кость. Для накостного остеосинтеза используют пластины, для внутрикостного – штифты, винты и спицы.
При внеочаговом остеосинтезе место перелома обычно не вскрывают. Травматолог проводит спицы и монтирует несколько колец или полуколец, соединяя их между собой при помощи стержней. Увеличивая или уменьшая расстояние между кольцами, врач может корректировать положение отломков как во время операции, так и после ее окончания. Самым популярным и многофункциональным вариантом внеочагового остеосинтеза является аппарат Илизарова.
Как при консервативном, так и при оперативном лечении переломов со смещением назначают ЛФК, массаж и физиотерапию. В восстановительном периоде проводят реабилитационные мероприятия, направленные на восстановление функции конечности. При отсутствии сращения или неправильном сращении осуществляют хирургические вмешательства, выбирая оперативную методику с учетом типа перелома и характера вторичных патологических изменений.
Источник