Физика на переломе тысячелетий

Физика на переломе тысячелетий, конденсированное состояние, учебное пособие, Воронов В.В., Подоплелов А.В., 2012.
В данном учебном пособии нашли отражение достижения физики конденсированного состояния вещества за последние полвека. Дается описание нелинейно-оптических и электрических явлений в материалах, для которых является характерным конденсированное состояние вещества. Излагаются особенности физических свойств новых магнитных материалов, появление которых в немалой степени определяет прогресс в науке и технике. Отражены результаты исследований в новой области знаний, связанной с пространственной организацией в конденсированных средах. Описаны основные характеристики ряда новых аналитических методов изучения конденсированного состояния вещества. При написании книги был использован материал, входивший в том числе и в обзорные статьи, опубликованные в журнале «Успехи физических наук». Список использованной литературы приводится в конце каждой главы.
Издание предназначено для студентов высших учебных заведений, аспирантов соответствующих специальностей, а также преподавателей. Оно будет полезно при чтении курсов «Физика конденсированного состояния», «Новые аналитические методы исследования вещества» и др.
Оптические свойства пленок полупроводников на металлических подложках.
Оптические свойства кристаллов представляют интерес уже несколько столетий. В последние примерно пятнадцать лет к традиционным методам их исследований (спектроскопия поглощения, отражения, люминесценция, комбинационное рассеяние света) добавились относительно новые: спектроскопия отражения-поглощения, нарушенного полного внутреннего отражения, термостимулированного излучения. Все они используются для изучения взаимосвязи структуры кристалла с его физическими свойствами, т.е. для определения уровней энергии электронных и колебательных возбуждений атомов (ионов), характера и констант сил связей между атомами, сил осцилляторов, параметра энгармонизма колебаний и других характеристик. При этом одной из основных задач оптической спектроскопии является соотнесение резонансных сигналов тому или иному типу колебаний (определение нормальных координат и их частот). Для бесконечного кристалла эта задача теоретически решается относительно легко, если известны структура кристалла
(координаты атомов, пространственная группа симметрии) и характер сил связи между атомами.
В эксперименте кристаллы имеют конечные размеры и границы кристаллов нарушают трансляционную симметрию. Атомы на поверхности кристалла обладают отличающимися от атомов в объеме кристалла силами связи с соседними атомами, а значит, и отличающимися оптическими свойствами объема и поверхности кристалла.
Оглавление.
Предисловие авторов.
Глава 1. Нелинейно-оптические явления.
Глава 2. Электрические явления.
Глава 3. Новые магнитные материалы.
Глава 4. Пространственная организация в конденсированных средах.
Глава 5. Новые аналитические методы исследования конденсированного состояния.
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Физика на переломе тысячелетий, конденсированное состояние, учебное пособие, Воронов В.В., Подоплелов А.В., 2012 – fileskachat.com, быстрое и бесплатное скачивание.
Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Скачать
– pdf – Яндекс.Диск.
Дата публикации: 09.11.2020 05:26 UTC
Теги:
физика :: Воронов :: Подоплелов :: 2012
Следующие учебники и книги:
- Сборник заданий формативного оценивания по предмету «Физика», 10 класс, 2019
- Сборник заданий для формативного оценивания по предмету «физика», 10 класс, 2019
- Физика дальнодействия, природа пространства-времени, Владимиров Ю.С., 2012
- Атомная физика, теоретические основы и лабораторный практикум, учебное пособие, Граков В.Е., 2011
Предыдущие статьи:
- Физика, учебное пособие для подготовки к диагностическому интернет-тестированию, Верлан Н.И., Попова С.А., 2013
- Лабораторные работы по физике на самодельных приборах, VI-VII классы, Шевелкин Д.С., Рыкунин Б.В., 1955
- Термодинамика, Учебное пособие, Дырдин В.В., Малыпин Л.А., Янина Т.И., Ёлкин И.С., 2005
- Техническая термодинамика, Часть 1, Чухин И.М., 2006
Источник
Источник
Предисловие авторов | |||
1 | Нелинейная оптика | ||
§ 1.1. | Многофотонные процессы | ||
§ 1.2. | Конденсация Бозе–Эйнштейна | ||
§ 1.3. | Нестационарные эффекты | ||
1.3.1. | Сверхизлучение | ||
1.3.2. | Самоиндуцированная прозрачность | ||
§ 1.4. | Солитоны | ||
§ 1.5. | Линейные и нелинейные системы | ||
1.5.1. | Гармонический осциллятор и математический маятник | ||
1.5.2. | Резонансное взаимодействие света с веществом | ||
§ 1.6. | Генерация сверхкоротких оптических импульсов | ||
§ 1.7. | Лазерное управление химической динамикой | ||
Контрольные вопросы | |||
Литература | |||
2 | Физика открытых систем | ||
§ 2.1. | Свойства самоорганизованных структур | ||
§ 2.2. | Динамические системы | ||
§ 2.3. | Детерминированный хаос | ||
§ 2.4. | Хаотический аттрактор Ресслера | ||
§ 2.5. | Множества Кантора | ||
§ 2.6. | Фракталы | ||
§ 2.7. | Сценарий Фейгенбаума | ||
Контрольные вопросы | |||
Литература | |||
3 | Конденсированные среды | ||
§ 3.1. | Самоорганизованные структуры в твердых телах | ||
§ 3.2. | Стохастический резонанс | ||
§ 3.3. | Неупорядоченные конденсированные системы | ||
3.3.1. | Дальний порядок и беспорядок в конденсированных средах | ||
3.3.2. | Особенности строения неупорядоченных систем | ||
§ 3.4. | Квазикристаллы | ||
§ 3.5. | Аморфные металлические материалы | ||
3.5.1. | Методы получения аморфных металлических сплавов | ||
3.5.2. | Структура аморфных сплавов | ||
3.5.3. | Аморфные ферромагнетики | ||
3.5.4. | Практическое использование аморфных сплавов | ||
§ 3.6. | Механизмы диффузии в неупорядоченных системах | ||
3.6.1. | Методы компьютерного моделирования неупорядоченных систем | ||
3.6.2. | Кооперативный механизм диффузии | ||
3.6.3. | Активационные механизмы диффузии | ||
3.6.4. | Локальные неоднородности аморфной структуры | ||
§ 3.7. | Физические свойства манганитов | ||
§ 3.8. | Периодические доменные структуры в электро- и магнитоупорядоченных веществах | ||
3.8.1. | Закономерности формирования доменной структуры в сегнетоэлектриках | ||
3.8.2. | Периодические доменные структуры | ||
3.8.3. | Образование сегнетоэлектрических доменов в электрических полях | ||
3.8.4. | Сегнетоэлектрические ПДС в поле акустической волны | ||
3.8.5. | Доменные структуры в магнетиках | ||
§ 3.9. | Сегнетоэлектрики в нелинейной оптике | ||
3.9.1. | Нелинейные оптические и акустические эффекты в периодических доменных структурах | ||
3.9.2. | Оптически индуцированные домены и ПДС в сегнетоэлектриках | ||
§ 3.10. | Управляемая трансформация физических свойств материалов ионными пучками | ||
§ 3.11. | Основные положения теории лазерной абляции | ||
3.11.1. | Тепловая модель | ||
3.11.2. | Двухтемпературная модель | ||
3.11.3. | Фотофизическая абляция | ||
3.11.4. | Газодинамика трехмерного разлета пара при лазерной абляции | ||
§ 3.12. | Фазы и фазовые переходы | ||
3.12.1. | Классификация фазовых переходов | ||
3.12.2. | Критические флуктуации при фазовых переходах | ||
3.12.3. | Основы идеологии метода ренормгруппы | ||
3.12.4. | Упорядочение и фазовые переходы | ||
Контрольные вопросы | |||
Литература | |||
4 | Полупроводники | ||
§ 4.1. | Гетеросистемы пониженной размерности | ||
4.1.1. | Размерное квантование энергии электронов | ||
4.1.2. | Экситон в низкоразмерных структурах | ||
§ 4.2. | Физические основы формирования наноструктур | ||
4.2.1. | Методы получения квантовых точек | ||
4.2.2. | Практическое применение наноструктур | ||
§ 4.3. | Гетероструктура германий-на-кремнии | ||
§ 4.4. | Новые источники света на основе гетероструктур | ||
§ 4.5. | Физические основы сверхпроводниковой электроники | ||
§ 4.6. | Взаимное влияние сверхпроводимости и магнетизма в гетероструктурах ферромагнетик/сверхпроводник | ||
§ 4.7. | Квантовый эффект Холла | ||
4.7.1. | Классический эффект Холла | ||
4.7.2. | Двумерные электронные системы | ||
4.7.3. | Модулированное легирование | ||
4.7.4. | Целочисленный квантовый эффект Холла | ||
4.7.5. | Дробный квантовый эффект Холла | ||
Контрольные вопросы | |||
Литература | |||
5 | Атомная физика | ||
§ 5.1. | Экзотические атомы | ||
§ 5.2. | Многозарядные ионы | ||
§ 5.3. | Многошаговый распад возбужденных состояний атомов | ||
§ 5.4. | Ридберговский атом | ||
§ 5.5. | Эксимерные молекулы | ||
§ 5.6. | Кластеры | ||
§ 5.7. | Фуллерены | ||
§ 5.8. | Эндоэдральные соединения | ||
§ 5.9. | Углеродные нанотрубки | ||
Контрольные вопросы | |||
Литература | |||
6 | Строение и динамика молекул | ||
§ 6.1. | Магнитный резонанс | ||
6.1.1. | Из истории спектроскопии магнитного резонанса | ||
6.1.2. | Спектроскопия ЯМР высокого разрешения | ||
6.1.3. | Основы теории ядерного магнитного резонанса | ||
6.1.4. | Природа магнитной релаксации | ||
6.1.5. | Теория Блоха | ||
6.1.6. | Ядерная индукция | ||
6.1.7. | Спектрометры ядерного магнитного резонанса | ||
6.1.8. | Основные достоинства метода ЯМР | ||
6.1.9. | Интроскопия ЯМР | ||
6.1.10. | Электронный парамагнитный резонанс | ||
6.1.11. | Двойной ядерный резонанс | ||
6.1.12. | Эффект Оверхаузера | ||
6.1.13. | Химическая поляризация ядер и электронов | ||
§ 6.2. | Математические модели теории строения и динамики молекул | ||
6.2.1. | Квантово-химические модели | ||
6.2.2. | Метод Хартри–Фока | ||
6.2.3. | Модели с учетом корреляции | ||
6.2.4. | Основные положения теории функционала плотности | ||
Контрольные вопросы | |||
Литература | |||
7 | Квантовая информация | ||
§ 7.1. | Суперпозиция, перепутанные состояния | ||
§ 7.2. | Квантовые компьютеры | ||
§ 7.3. | Квантовая криптография | ||
§ 7.4. | Квантовая телепортация | ||
Контрольные вопросы | |||
Литература | |||
8 | Фундаментальные взаимодействия | ||
§ 8.1. | Гравитационное взаимодействие | ||
§ 8.2. | Слабое взаимодействие | ||
§ 8.3. | Электромагнитное взаимодействие | ||
§ 8.4. | Сильное взаимодействие | ||
§ 8.5. | О некоторых проблемах физики элементарных частиц | ||
§ 8.6. | Понятие массы в современной физике | ||
§ 8.7. | Физический эксперимент: современное состояние и перспективы развития | ||
8.7.1. | Некоторые достижения экспериментальной физики за последние пятьдесят лет | ||
8.7.2. | Технологические и квантовые пределы достижимой чувствительности | ||
8.7.3. | Возможные экспериментальные достижения в ближайшие двадцать лет | ||
Контрольные вопросы | |||
Литература | |||
9 | Ядерная физика | ||
§ 9.1. | Кварки в ядрах | ||
§ 9.2. | Ускорители частиц | ||
§ 9.3. | Энергетические свойства ядер | ||
§ 9.4. | Ядра, удаленные от области стабильности | ||
§ 9.5. | Радиоактивность | ||
§ 9.6. | Спонтанное деление ядер и спонтанно делящиеся ядерные изомеры | ||
§ 9.7. | Протонная и двухпротонная радиоактивность | ||
§ 9.8. | Кластерная радиоактивность | ||
§ 9.9. | Сверхплотная ядерная материя | ||
§ 9.10. | Переходное излучение | ||
Контрольные вопросы | |||
Литература | |||
10 | Проблема происхождения жизни и мышления с точки зрения современной физики | ||
§ 10.1. | Динамические свойства простых белков | ||
10.1.1. | Структурная организация функционирующих белков | ||
10.1.2. | Модели белка как физического тела | ||
10.1.3. | Основные требования к структурной организации функционирующих белков | ||
10.1.4. | Самоорганизация белков | ||
10.1.5. | Сложность белков | ||
§ 10.2. | Проблема возникновения жизни | ||
10.2.1. | Ранние стадии биологической эволюции | ||
10.2.2. | Молекулярные аспекты механизма авторепродукции | ||
10.2.3. | Варианты первичного биосинтеза | ||
§ 10.3. | Проблема биологической асимметрии | ||
§ 10.4. | Проблема темпов биологической эволюции | ||
§ 10.5. | Информация | ||
§ 10.6. | Проблема возникновения мышления | ||
10.6.1. | Элементы теории распознавания | ||
10.6.2. | Нейрокомпьютинг | ||
10.6.3. | Мышление и распознавание образа | ||
Контрольные вопросы | |||
Литература |
Принципиальным моментом современного развития науки является все
возрастающий объем знаний. Зародившись в древнем мире в связи
с потребностями общественной практики, наука превратилась в производительную
силу и важнейший социальный институт, оказывающий значительное влияние
на все сферы общества и культуру в целом. Объем научной деятельности с XVII
века удваивается примерно каждые 10–15 лет (рост открытий, научной
информации, числа научных работников). Следствием стремительного роста
объема информации является все более увеличивающийся разрыв между
достигнутым наукой уровнем знаний и тем, что преподается в вузе.
В одном из своих выступлений профессор С.П.Капица высказал мысль, что
каждое поколение должно написать свой учебник по физике. Возникают вопросы:
“Пришло ли время для написания такого учебника и если да, то готово ли
нынешнее поколение (конца XX — начала XXI века)
сделать это? И самое главное — каким должно быть содержание такого учебного
издания?” Говоря об истории развития физики, известный американский
физик-популяризатор науки Джей Орир, до некоторой степени произвольно,
выделил три периода — классический, новый и современный. К концу XIX
века были подробно изучены такие разделы физики, как механика,
термодинамика, электромагнетизм, оптика и гидродинамика. Разработка теории
этих разделов казалась в основных чертах завершенной, так что в дальнейшем
вряд ли можно было ожидать каких-либо новых важных открытий. Совокупность
этих разделов принято было называть классической физикой.
В самом конце XIX века и на протяжении первых трех десятилетий XX века
в физике был сделан ряд удивительных открытий. Было обнаружено явление
радиоактивности, которое в дальнейшем стало использоваться для исследования
строения атома. Создание теории относительности заставило пересмотреть
прежние взгляды на пространство и время. Попытки описать строение атома
привели к созданию квантовой теории. Этот период, на протяжении
которого изменился весь характер физических исследований, стали
называть периодом новой физики.
В 30-х годах XX века впервые наблюдалось радиоизлучение звезд, были
открыты нейтрон и деление атомных ядер. Эти и другие
открытия привели к накоплению огромного количества результатов
в новых областях физики, и это продолжает происходить и в настоящее время.
Подобное развитие физических исследований, следствием которых явились
дальнейшие открытия и возникновение новых идей, привело к созданию
современной физики.
Отличительной чертой современного естествознания, наряду с ростом объема
информации, является все более усиливающаяся интеграция научных исследований.
Такая тенденция делает все более условным деление естествознания на строго
конкретные разделы. Хотя главенствующая роль физики, изучающей простейшие
и вместе с тем наиболее общие свойства материального мира, остается, равно как
остается и специфика предмета исследований других разделов естествознания.
Указанные особенности (стремительный рост научной информации и все более
усиливающая интеграция различных разделов естествознания) ставят проблемы
методологического характера, которые необходимо решать в процессе издания
учебной литературы. Актуальность проблемы еще усиливается и тем фактом, что
очень часто делается акцент на то, как учить. Хотя проблема состоит
в другом: чему учить? И, конечно, фактическое прекращение массового
выпуска научной и учебной литературы во многом сдерживает решение
обсуждаемой здесь проблемы.
Вышеизложенное побудило нас взяться за подготовку и издание данной книги,
в которой нашли бы отражение достижения физики за последние примерно пятьдесят
лет. Она написана на основании материала, отобранного из различных
источников (обзорные статьи, монографии, учебники). Преимущественные
источники, которые мы использовали — статьи, опубликованные в журнале
“Успехи физических наук” и в Соросовском образовательном журнале. Список
литературы приводится в конце каждой главы. В целом ряде случаев в него
включаются источники, из которых материал не брался вовсе или, если это
делалось, то в небольшом объеме. Но они могут быть полезными для
углубленного изучения материала, что и побудило нас таким образом расширить
список литературы, содержащий более двухсот пятидесяти наименований.
Таким образом, читатель нашего издания получает возможность использовать
обширный список публикаций по различным разделам современной физики.
Мы понимаем сложность поставленной нами задачи. Но ее нужно начинать решать
уже сейчас. Для этого необходим какой-то опыт, нужно сделать первый шаг.
Хочется верить, что этот первый шаг нам удался. Учитывая, что за указанный
выше период накоплен огромный научный материал, а объем книги (так же как
и срок обучения студентов) ограничен, налицо необходимость делать выбор.
Работая над книгой, мы имели в виду прежде всего студентов технических
специальностей. Конечно, это не случайно. Технический прогресс, свидетелями
которого мы являемся, оказался возможным прежде всего благодаря достижениям
науки последних нескольких десятилетий. В то же время мы включили те разделы
физики, которые, возможно, непосредственно не влияют на технический
прогресс, однако без них невозможно понять тот мир, в котором мы живем.
Если говорить об уровне изложения материала нашей книги, то его можно
считать промежуточным между учебником и научным обзором. Стало быть,
в первую очередь ее читателями должны стать студенты старших курсов, которым
уже были прочитаны соответствующие курсы физики и математики. Мы полагаем,
что материал ее может быть изложен в течение 35–40 двухчасовых лекций. Мы
стремились к тому, чтобы изложение включаемого материала носило интересную
форму, что способствует более сознательному его усвоению. Эту же цель
преследуют контрольные вопросы к каждой главе книги, а также многочисленные
иллюстрации.
В.К.Воронов,
А.В.Подоплелов
Об авторах
Воронов Владимир Кириллович
Доктор химических наук, профессор, заслуженный деятель науки Российской Федерации, лауреат премии Правительства Российской Федерации в области образования. Профессор Иркутского национального исследовательского технического университета. Научные интересы связаны с решением проблем молекулярной спектроскопии и физико-органической химии методами ядерного магнитного резонанса высокого разрешения и квантовой химии. Последние примерно двадцать лет в круг научных интересов входят исследования в области квантовой информации, а также научно-методическая проблематика, связанная с познавательными барьерами студентов вузов. Российской академией естествознания награжден Золотой медалью “За новаторскую работу в области высшего образования”.
Подоплелов Алексей Витальевич
Доктор химических наук, профессор, научный эксперт компании «ХТлаб» (Пфэффикон, Швейцария). Лауреат премии Правительства Российской Федерации в области образования. Научная деятельность связана с изучением парамагнитных частиц методами ядерного магнитного резонанса высокого разрешения. Является известным специалистом по исследованию эффектов электронных и ядерных спинов на протекание реакций с участием радикалов. Автор (соавтор) более 70 публикаций, включая 9 книг.
Источник